Decoding spike trains instant by instant using order statistics and the mixture-of-Poissons model.
نویسندگان
چکیده
In the brain, spike trains are generated in time and presumably also interpreted as they unfold in time. Recent work (Oram et al., 1999; Baker and Lemon, 2000) suggests that in several areas of the monkey brain, individual spike times carry information because they reflect an underlying rate variation. Constructing a model based on this stochastic structure allows us to apply order statistics to decode spike trains instant by instant as spikes arrive or do not. Order statistics are time-consuming to compute in the general case. We demonstrate that data from neurons in primary visual cortex are well fit by a mixture of Poisson processes; in this special case, our computations are substantially faster. In these data, spike timing contributed information beyond that available from the spike count throughout the trial. At the end of the trial, a decoder based on the mixture-of-Poissons model correctly decoded about three times as many trials as expected by chance, compared with approximately twice as many as expected by chance using the spike count only. If our model perfectly described the spike trains, and enough data were available to estimate model parameters, then our Bayesian decoder would be optimal. For four-fifths of the sets of stimulus-elicited responses, the observed spike trains were consistent with the mixture-of-Poissons model. Most of the error in estimating stimulus probabilities is attributable to not having enough data to specify the parameters of the model rather than to misspecification of the model itself.
منابع مشابه
B . J . Richmond , Model based decoding of spike trains . Page 1 07 / 26 / 02 Model based decoding of spike trains
Reliably decoding neuronal responses requires knowing what aspects of neuronal responses are stimulus related, and which aspects act as noise. Recent work shows that spike trains can be viewed as stochastic samples from the rate variation function, as estimated by the time dependent spike density function (or normalized peristimulus time histogram). Such spike trains are exactly described by or...
متن کاملModel based decoding of spike trains.
Reliably decoding neuronal responses requires knowing what aspects of neuronal responses are stimulus related, and which aspects act as noise. Recent work shows that spike trains can be viewed as stochastic samples from the rate variation function, as estimated by the time dependent spike density function (or normalized peristimulus time histogram). Such spike trains are exactly described by or...
متن کاملIncorporating spike-rate adaptation into a rate code in mathematical and biological neurons.
For a slowly varying stimulus, the simplest relationship between a neuron's input and output is a rate code, in which the spike rate is a unique function of the stimulus at that instant. In the case of spike-rate adaptation, there is no unique relationship between input and output, because the spike rate at any time depends both on the instantaneous stimulus and on prior spiking (the "history")...
متن کاملBayesian decoding of neural spike trains
Perception, memory, learning, and decision making are processes carried out in the brain. The performance of such intelligent tasks is made possible by the communication of neurons through sequences of voltage pulses called spike trains. It is of great interest to have methods of extracting information from spike trains in order to learn about their relationship to behavior. In this article, we...
متن کاملStatistical models for neural encoding, decoding, and optimal stimulus design.
There are two basic problems in the statistical analysis of neural data. The "encoding" problem concerns how information is encoded in neural spike trains: can we predict the spike trains of a neuron (or population of neurons), given an arbitrary stimulus or observed motor response? Conversely, the "decoding" problem concerns how much information is in a spike train, in particular, how well can...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 6 شماره
صفحات -
تاریخ انتشار 2003